M.L. Dahanukar College of Commerce

Teaching Plan: 2022 - 23

Department: I.T. Class: M.Sc.(I.T.) Semester: II

Subject: Microservice Architecture

Name of the Faculty: Prajakta Joshi

Month	Topics to be Covered	Internal Assessment	Number of Lectures
January	Microservices: Understanding Microservices, Adopting Microservices, The Microservices Way.	Assessment	02
February	Microservices Value Proposition: Deriving Business Value, defining a Goal-Oriented, Layered Approach, Applying the Goal-Oriented, Layered Approach. Designing Microservice Systems: The Systems Approach to Microservices, A Microservices Design Process, Establishing a Foundation: Goals and Principles, Platforms, Culture. Service Design: Microservice Boundaries, API design for Microservices, Data and Microservices, Distributed Transactions and Sagas, Asynchronous Message-Passing and Microservices, dealing with Dependencies, System Design and Operations: Independent Deployability, More Servers, Docker and Microservices, Role of Service Discovery, Need for an API Gateway, Monitoring and Alerting.		16
March	Adopting Microservices in Practice: Solution Architecture Guidance, Organizational Guidance, Culture Guidance, Tools and Process Guidance, Services Guidance. Building Microservices with ASP.NET Core: Introduction, Installing .NET Core, Building a Console App, Building ASP.NET Core App. Delivering Continuously: Introduction to Docker, Continuous integration with		14

	Wercker, Continuous Integration with Circle CI, Deploying to Dicker Hub. Building Microservice with ASP.NET Core: Microservice, Team Service, API First Development, Building Microservice with ASP.NET Core: Microservice, Team Service, API First Development, Test First Controller, Creating a CI	
	pipeline, Integration Testing, Running the team service Docker Image.	
April	Backing Services: Microservices Ecosystems, Building the location Service, Enhancing Team Service. Creating Data Service: Choosing a Data Store, Building a Postgres Repository, Databases are Backing Services, Integration Testing Real Repositories, Exercise the Data Service.Event Sourcing and CQRS: Event Sourcing, CQRS pattern, Event Sourcing and CQRS, Running the samples. Building an ASP.NET Core Web Application: ASP.NET Core Basics, Building Cloud-Native Web Applications. Service Discovery: Cloud Native Factors, Netflix Eureka, Discovering and Advertising ASP.NET Core Services. DNS and	14
May	Platform Supported Discovery. Configuring Microservice Ecosystems: Using Environment Variables with Docker, Using Spring Cloud Config Server, Configuring Microservices with etcd, Securing Applications and Microservices: Security in the Cloud, Securing ASP.NET Core Web Apps, Securing ASP.NET Core Microservices. Building Real-Time Apps and Services: Real-Time Applications Defined, Websockets in the Cloud, Using a Cloud Messaging Provider, Building the Proximity Monitor. Putting It All Together: Identifying and Fixing Anti-Patterns, Continuing the Debate over Composite Microservices, The Future.	14

P.T.V.A.'s

M.L.Dahanukar College of Commerce

Teaching Plan: 2022 – 2023

Department: Information Technology

Class: M.Sc (part I) – Sem-II
Subject: BIG DATA ANALYTICS

Name of the Faculty: Prof. Supritha Bhandary

Month	Topics to be Covered	Internal Assessment	Number of Lectures
JAN	Introduction to Big Data, Characteristics of Data, and Big Data Evolution of Big Data, Definition of Big Data, Challenges with big data, Why Big data?		02
FEB	Data Warehouse environment, Traditional Business Intelligence versus Big Data. Examples of big Data Analytics. Big Data Analytics, Classification of Analytics, Challenges of Big Data, Importance of Big Data, Big Data Technologies, Data Science, Responsibilities, Soft state eventual consistency. Data Analytics Life Cycle Analytical Theory and Methods: Clustering and Associated Algorithms, Association Rules		14
MAR	Apriori Algorithm, Candidate Rules, Applications of Association Rules, Validation and Testing, Diagnostics, Regression, Linear Regression, Logistic Regression, Additional Regression Models Analytical Theory and Methods: Classification, Decision Trees, Naïve Bayes, Diagnostics of Classifiers, Additional Classification Methods, Categorizing Documents by Topics, Determining Sentiments		22
APR	Data Product, Building Data Products at Scale with Hadoop, Data Science Pipeline, Hadoop Ecosystem, Operating System for Big Data, Concepts, Hadoop Architecture Distributed Analysis and Patterns, Computing with Keys, Design Patterns, Last-Mile Analytics, Data Mining and Warehousing, Analytics with higher level APIs, Pig, Spark's higher level APIs		22

M.L.Dahanukar College of Commerce

Teaching Plan: 2022 - 23

Department: I.T. Class: M.Sc.(I.T.) Part-I Semester: II

Subject: Modern Networking

Name of the Faculty: Mr. Chayan Bhattacharjee

Month	Topics to be Covered	Internal Assessment	Number of Lectures
February	Unit I:	Assessment	Dectures
1 cordary	Modern Networking		08
	Elements of Modern Networking: The Networking Ecosystem,		00
	Example Network Architectures, Global Network Architecture, A		
	Typical Network Hierarchy Ethernet Applications of Ethernet		
	Standards Ethernet Data Rates Wi-Fi Applications of Wi-Fi,		
	Standards Wi-Fi Data Rates 4G/5G Cellular First Generation Second		
	Generation, Third Generation Fourth Generation Fifth Generation,		
	Cloud Computing Cloud Computing Concepts The Benefits of Cloud		
	Computing Cloud Networking Cloud Storage, Internet of Things:		
	Things on the Internet of Things		
	Unit 1 (Cont.): Evolution Layers of the Internet of Things, Network		
March	Convergence Unified Communications, Requirements and		16
	Technology Types of Network and Internet Traffic, Elastic Traffic,		
	Inelastic Traffic, Real-Time Traffic Characteristics Demand: Big		
	Data, Cloud Computing, and Mobile Traffic Big Data Cloud		
	Computing, Mobile Traffic, Requirements: QoS and QoE, Quality of		
	Service, Quality of Experience, Routing Characteristics, Packet		
	Forwarding, Congestion Control ,Effects of Congestion, Congestion		
	Control Techniques, SDN and NFV Software- Defined Networking,		
	Network Functions Virtualization Modern Networking Elements.		
	Unit II:		
	Software-Defined Networks		
	SDN: Background and Motivation, Evolving Network Requirements		
	Demand Is Increasing, Supply Is Increasing Traffic Patterns Are More		
	Complex Traditional Network Architectures are Inadequate, The		
	SDN Approach Requirements SDN Architecture Characteristics of Software-Defined Networking, SDN- and NFV-Related Standards		
	Standards-Developing Organizations Industry Consortia Open		
	Development Initiatives, SDN Data Plane and OpenFlow SDN Data		
	Plane, Data Plane Functions Data Plane Protocols OpenFlow Logical		
	Network Device Flow Table Structure Flow Table Pipeline, The Use		
	of Multiple Tables Group Table OpenFlow Protocol, SDN Control		
	Plane SDN Control Plane Architecture Control Plane Functions,		
	Southbound Interface Northbound Interface Routing, ITU-T Model,		
	OpenDaylight OpenDaylight Architecture OpenDaylight Helium,		
	REST REST Constraints Example REST API, Cooperation and		
	Coordination Among Controllers, Centralized Versus Distributed		

	Controllers, High- Availability Clusters Federated SDN Networks,	
	Border Gateway Protocol Routing and QoS Between Domains, Using	
	BGP for QoS Management IETF SDNi OpenDaylight SNDi SDN	
	Application Plane SDN Application Plane Architecture Northbound	
	Interface Network Services Abstraction Layer Network Applications,	
	User Interface, Network Services Abstraction Layer Abstractions in	
	SDN,	
	Unit II (Cont.): Frenetic Traffic Engineering PolicyCop Measurement	
April	and Monitoring Security OpenDaylight DDoS Application Data	16
7 tpiii	Center Networking, Big Data over SDN Cloud Networking over SDN	10
	Mobility and Wireless Information-Centric Networking CCNx, Use	
	•	
	of an Abstraction Layer.	
	Unit III: Virtualization, Network Functions Virtualization: Concepts	
	and Architecture, Background and Motivation for NFV, Virtual	
	Machines The Virtual Machine Monitor, Architectural Approaches	
	Container Virtualization, NFV Concepts Simple Example of the Use	
	of NFV, NFV Principles High-Level NFV Framework, NFV Benefits	
	and Requirements NFV Benefits, NFV Requirements, NFV	
	Reference Architecture NFV Management and Orchestration,	
	Reference Points Implementation, NFV Functionality, NFV	
	Infrastructure, Container Interface, Deployment of NFVI Containers,	
	Logical Structure of NFVI Domains, Compute Domain, Hypervisor	
	Domain, Infrastructure Network Domain, Virtualized Network	
	Functions, VNF Interfaces, VNFC to VNFC Communication, VNF	
	Scaling, NFV Management and Orchestration, Virtualized	
	Infrastructure Manager, Virtual Network Function Manager, NFV	
	Orchestrator, Repositories, Element Management, OSS/BSS, NFV	
	Use Cases Architectural Use Cases, Service-Oriented Use Cases,	
	SDN and NFV Network Virtualization, Virtual LANs ,The Use of	
	Virtual LANs, Defining VLANs, Communicating VLAN	
	Membership, IEEE 802.1Q VLAN Standard, Nested VLANs,	
	OpenFlow VLAN Support, Virtual Private Networks, IPsec VPNs,	
	MPLS VPNs, Network Virtualization, Simplified Example, Network	
	Virtualization Architecture, Benefits of Network Virtualization,	
	OpenDaylight's Virtual Tenant Network, Software-Defined	
	Infrastructure, Software- Defined Storage, SDI Architecture	
	Unit IV: Defining and Supporting User Needs, Quality of Service,	
May	Background, QoS Architectural Framework, Data Plane, Control	20
J	Plane, Management Plane, Integrated Services Architecture, ISA	
	Approach ISA Components, ISA Services, Queuing Discipline,	
	Differentiated Services, Services, DiffServ Field, DiffServ	
	Configuration and Operation, Per-Hop Behavior, Default Forwarding	
	PHB, Service Level Agreements, IP Performance Metrics, OpenFlow	
	QoS Support, Queue Structures, Meters, QoE: User Quality of	
	Experience, Why QoE?, Online Video Content Delivery, Service	
	Failures Due to Inadequate QoE Considerations QoE-Related	
	Standardization Projects, Definition of Quality of Experience,	
	Definition of Quality, Definition of Experience Quality Formation	
	Process, Definition of Quality of Experience, QoE Strategies in	
	Practice, The QoE/QoS Layered Model Summarizing and Merging	
	the ,QoE/QoS Layers, Factors Influencing QoE, Measurements of	

QoE, Subjective Assessment, Objective Assessment, End-User Device Analytics, Summarizing the QoE Measurement Methods, Applications of QoE Network Design Implications of QoS and QoE Classification of QoE/ QoS Mapping Models, Black-Box Media-Based QoS/QoE Mapping Models, Glass- Box Parameter-Based QoS/QoE Mapping Models, Gray-Box QoS/QoE Mapping Models, Tips for OoS/OoE Mapping Model Selection, IP Oriented Parameter-Based OoS/OoE Mapping Models Network Layer OoE/OoS Mapping Models for Video Services, Application Layer QoE/QoS Mapping Models for Video Services Actionable QoE over IP-Based Networks, The System-Oriented Actionable QoE Solution, The Service-Oriented Actionable QoE Solution, QoE Versus QoS Service Monitoring, QoS Monitoring Solutions, QoE Monitoring Solutions, QoE-Based Network and Service Management, QoE-Based Management of VoIP Calls, QoE-Based Host-Centric Vertical Handover, QoE-Based Network-Centric Vertical Handover Unit V: Modern Network Architecture: Clouds and Fog, Cloud Computing, Basic Concepts, Cloud Services, Software as a Service, Platform as a Service, Infrastructure as a Service, Other Cloud Services, XaaS, Cloud Deployment Models, Public Cloud Private Cloud Community Cloud, Hybrid Cloud, Cloud Architecture, NIST Cloud Computing Reference Architecture, ITU-T Cloud Computing Reference Architecture, SDN and NFV, Service Provider Perspective Private Cloud Perspective, ITU-TCloud Computing Functional Reference Architecture, The Internet of Things: Components The IoT Era Begins, The Scope of the Internet of Things Components of IoT-Enabled Things, Sensors, Actuators, Microcontrollers, Transceivers, RFID, The Internet of Things: Architecture and Implementation, IoT Architecture, ITU-T IoT Reference Model, IoT World Forum Reference Model, IoT Implementation, IoTivity, Cisco IoT System, ioBridge, Security Security Requirements, SDN Security Threats to SDN, Software- Defined Security, NFV Security, Attack Surfaces, ETSI Security Perspective, Security Techniques, Cloud Security, Security Issues and Concerns, Cloud Security Risks and Countermeasures, Data Protection in the Cloud, Cloud Security as a Service, Addressing Cloud ComputerSecurity Concerns, IoT Security, The Patching Vulnerability, IoT Security and Privacy Requirements Defined by ITU-TAn IoT Security Framework, Conclusion

ML Dahanukar College

Teaching Plan: 2022 - 23

Department: <u>I.T.</u> Class: <u>MSc.(I.T.) Part-I</u> Semester: <u>II</u>

Subject: <u>Image Processing</u>

Name of the Faculty: Ms. Rasika Sawant

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
February	Unit I		16
	Introduction		
	Digital Image Fundamentals		
	Intensity Transformations and Spatial Filtering		16
March	Unit II		
	Filtering in the Frequency Domain		
	Image Restoration and Reconstruction		
April	Unit III:		16
	Wavelet and Other Image Transforms		
	Color Image Processing		
	Image Compression and Watermarking		
	Unit IV:		
	Morphological Image Processing		
May	Image Segmentation I: Edge Detection,		16
	Thresholding, and Region Detection		
	Unit IV:		
	Image Segmentation II: Active Contours:		
	Snakes and Level Sets		
	Feature Extraction		

Sign of Faculty

Sign of Coordinator